Package: RRF 1.9.4.1

RRF: Regularized Random Forest

Feature Selection with Regularized Random Forest. This package is based on the 'randomForest' package by Andy Liaw. The key difference is the RRF() function that builds a regularized random forest. Fortran original by Leo Breiman and Adele Cutler, R port by Andy Liaw and Matthew Wiener, Regularized random forest for classification by Houtao Deng, Regularized random forest for regression by Xin Guan. Reference: Houtao Deng (2013) <doi:10.48550/arXiv.1306.0237>.

Authors:Houtao Deng [aut, cre], Xin Guan [aut], Andy Liaw [aut], Leo Breiman [aut], Adele Cutler [aut]

RRF_1.9.4.1.tar.gz
RRF_1.9.4.1.zip(r-4.5)RRF_1.9.4.1.zip(r-4.4)RRF_1.9.4.1.zip(r-4.3)
RRF_1.9.4.1.tgz(r-4.4-x86_64)RRF_1.9.4.1.tgz(r-4.4-arm64)RRF_1.9.4.1.tgz(r-4.3-x86_64)RRF_1.9.4.1.tgz(r-4.3-arm64)
RRF_1.9.4.1.tar.gz(r-4.5-noble)RRF_1.9.4.1.tar.gz(r-4.4-noble)
RRF_1.9.4.1.tgz(r-4.4-emscripten)RRF_1.9.4.1.tgz(r-4.3-emscripten)
RRF.pdf |RRF.html
RRF/json (API)
NEWS

# Install 'RRF' in R:
install.packages('RRF', repos = c('https://softwaredeng.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

3.70 score 3 packages 117 scripts 1.6k downloads 3 mentions 18 exports 0 dependencies

Last updated 19 days agofrom:161a9f0f36. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-win-x86_64OKNov 05 2024
R-4.5-linux-x86_64OKNov 05 2024
R-4.4-win-x86_64OKNov 05 2024
R-4.4-mac-x86_64OKNov 05 2024
R-4.4-mac-aarch64OKNov 05 2024
R-4.3-win-x86_64OKNov 05 2024
R-4.3-mac-x86_64OKNov 05 2024
R-4.3-mac-aarch64OKNov 05 2024

Exports:classCentercombinegetTreegrowimportancemarginMDSplotna.roughfixoutlierpartialPlotRRFrrfcvrrfImputerrfNewstreesizetuneRRFvarImpPlotvarUsed

Dependencies: